

大功率离子源技术及在NBI上的应用

谢亚红

中科院合肥物质科学研究院等离子体物理研究所,中性束注入研究室

离子源: Ion Source

中性束注入系统工作原理图

- > 离子源发展简史
- > 离子源的分类
- > 离子源的工作原理
- > 大功率离子源在NBI上的应用

≻小结

▶ 离子源发展简史

- > 离子源的工作原理
- > 大功率离子源在NBI上的应用

≻小结

离子源发展简史

20世纪20年代: 低流强低能散的表面电离源和电子轰击型源 20世纪30年代:开始研究高效率气体放电型离子源-潘宁型源等 20世纪50年代:高频离子源、高性能双等离子体源:负离子源 20世纪60年代:对各类源的细致研究(双等离子体源) 20世纪80年代至今 ☞ 热阴极弧源 - - 受控聚变研究 需求驱动研究! ☞ 负离子源 - - 下一代聚变装置 ☞ 溅射型负离子源 - - 串列式静电加速器 ☞ 电子束源、电子回旋共振型源 - - 重离子物理 ☞ 超大功率短脉冲离子源 - - "惯性约束"聚变 ☞极化离子源 - - 核物理

> 离子源发展简史

- > 离子源的工作原理
- ≻ 大功率离子源在NBI上的应用

≻小结

离子源的组成

离子源:包括等离子体发生器(等离子体源)和加速器两大部分

等离子体发生器:通过注入工作气体,利用气体放电 产生大体积、高密度、稳定、均匀的产生等离子体, 为离子的引出和加速提供满足参数的带电离子。

加速器:在高压下,束引出栅极内产生强静电场,形
成离子光学透镜。加速器引出等离子体中离子,形成
离子束并加速到一定的能量。

强流热阴极离子源示意图

♂ 按放电类型

- 热阴极离子源 应用最广泛的离子源 冷阴极离子源 - 结构和供电简单、寿命长 高频离子源和微波离子源 其它类型的离子源
 - 正离子源:引出/加速正离子 负离子源:引出/加速负离子

> 离子源发展简史

- □ 热阴极离子源
- □ 射频离子源

□ 加速器

> 大功率离子源在NBI上的应用

热阴极弧放电装置

- AB段: 1/4大于气体电离电位, 气体电离
- BC段:亚稳原子逐级电离成离子
- C点: 热发射限制流

热电子的发射与热阴极

- □ 热阴极离子源通过加热灯丝发射热电子提供初始电离电子
- □ 工作温度低,电子发射能力强,耐返流离子的轰击,而且要求其发射的稳定性好,污染小,

20 19 18

阴极类型 钨		氧化物	六硼化镧	镧钼	备注
工作温度 /K	2 450~2 650	1 000~1 200	1 800~1 900	1 700~1 900	
逸出功 /(eV)	4.44~4.63	1.0~1.1	2.6~2.8	见备注	国内尚无有关数据
$\bar{D} / (A/20 \sim 120)$ (cm ² · K ²))		0.1~2	28~32	见备注	见式(1)Richardson 方程
发射电流密度 <i>j</i> ./ cm ²	~0.5	4~10	10~40	8~12	et
加热比功率 P _f /(W/cm ²)	70~84	2.8~50	100~150	59~100	P _f = <u>阴极加热功率</u> 阴极表面积
发射效率 ŋ/(mA/W)	4~-10	400~600	100~300	30~80	7= <u>阴极发射电流</u> 阴极消耗功率
辐射功率 /(W/cm²)	70~80	3~4	~40	~40	
寿命 /h 几百		~200	~1 000	>1 000	
耐高压性能	好	差	好	好	_
材料机械加工 简单、易做		简单、易做	坚硬、难加工、 用后发脆	展延性好,易 机械加工,用 后不发脆	国内尚不能生产优良 性能的 LaMo 材料

寿命长,加工制作简单等

 $J_e = A \overline{D} T^2 \exp(-e\varphi/kT)$

A为热电子发射常数,为灯丝阴极表面平均电子投射系数,理论值为120A/cm²•K²,7为灯丝阴极的热力学温度(K), $e \varphi$ 为表面逸出功,k为波尔兹曼常数

T/10³K

T (K)	2100	2200	2300	2400	2500
τ (h)	1.31×10^{7}	1.65×10^{5}	2.64 $\times 10^{5}$	4.73×10 ⁴	1.02×10^{4}
T (K)	2600	2700	2800	2900	3000
τ (h)	2347	651	185	60	21

2021/7/28

灯丝寿命与温度的关系

等离子体放电基本工作原理

➢ 弧压产生的电场引出阴极发射的电子,并加速到一定的能量,电离中性 气体形成电子 - 离子对,建立等离子体

▶ 等离子体建立后,在阴极前形成双鞘层,弧压基本加载在这个鞘层内, 电子通过鞘层获得能量

一次碰撞过程

 $H_2 + e = H_2^+ + 2e$ $H_2 + e = H_1^+ + H_1 + 2e$

其中第一个过程的截面和第二个过程的截面之比约为200:1,此过程产生的原子离子 H_1^+ 的比例很小,较多的是分子离子 H_2^+

二次碰撞过程 - 分子离介继而原子电离, 在离子源内建立起分子和原子的平衡浓度

$$H_2 + e = H_1 + H_1 + e$$

 $H_1 + e = H_1^+ + 2e$

二次碰撞过程 - 分子电离继而分子离子离解

 $H_{2} + e = H_{2}^{+} + 2e$ $H_{2}^{+} + e = H_{1}^{+} + H_{1} + e$ $H_{2}^{+} + e = H_{1}^{+} + H_{1}^{+} + 2e$

二次碰撞过程 - 离解复合

2021/7/28

However, $H_2 + e = H_2^+ + 2e$ $H_2^+ + e = H_1 + H_1$ $H_1 + e = H_1^+ + 2e$

灯丝

-- - + - -+-+ - + - ++ + + - + + +

等离子体

潘宁离子源

□ 对于中性束注入技术,要求等离子体密度要高,因此容性耦合放电等离子体源不太合适

□ 由于螺旋波放电存在着仿真的放电模式跳变,对放电过程不易控制,这种等离子体源也不

太适应用于中性束注入技术

□ 综合比较,应首先ICP源作为中性束离子源 2021/7/28

- 1. RF current in the coil I_{RF} produces an axial magnetic field
- 2. Magnetic field induces an electric field
- 3. Acceleration of the electrons and ionizing collisions with the neutrals
- 4. Plasma compression by Lorentz force
 => reduces skin effect
 => better coupling at high power
 - => better coupling at high power

离子源的工作原理---加速器

口 加速器是离子源的核心部件,也是最难和最复杂的部件口 研究方法:实验研究;近似模型分析法;数值模拟。

理想平面二级管的空间电荷限制流:束引出系统可简化为两个无限大的平面带电板,假设进入平面板的离子速度为零,并且成分单一。 $\frac{d^2V}{dz^2} = -\frac{\rho}{\varepsilon_0} = \frac{J}{\varepsilon_0 v} = \frac{J}{\varepsilon_0 \sqrt{2\frac{e}{m_i}}\sqrt{v}} \longrightarrow J = \frac{4\varepsilon_0}{9} \sqrt{2\frac{e}{m_i}} \frac{V_a^{\frac{3}{2}}}{d^2}$

引出离子:
$$J_i = 5.45 \times 10^{-8} \sqrt{\frac{z}{A}} \frac{V_a^{\frac{3}{2}}}{d^2}$$
 引出电子: $J_e = 2.32 \times 10^{-6} \frac{V_a^{\frac{3}{2}}}{d^2}$

在束引出时,等离子体和引出电极存在鞘层,电子和离子在鞘层内形成双极性扩散,等离子体 - 鞘层方程: $\frac{d^2\phi}{dz^2} = -\frac{e}{\varepsilon_0} \left\{ \sqrt{\frac{M}{2e}} \int_0^x \frac{y(\xi)d\xi}{\left[\phi(\xi) - \phi(z)\right]} - n_{eo} \exp(\frac{e\phi}{kT_e}) \right\}$ **离子源的引出电流密度:** $J_i \approx (0.4 \pm 0.05) n_{eo} e \sqrt{\frac{2kT_e}{M_e}} \approx 8.9 \times 10^{-14} n_{eo} \sqrt{\frac{T_e}{M_e}} (A/cm^2)$

离子源的能量大于百keV时,考虑到电极功率负载和耐压性能的限制,需要采用多级加速的结构,但是极数过多,会因总长度过长使电荷交换损失和电极负载过大,因此一般采用四电极系统

研究表明在最佳导流系数时,四电极系统可以获 得较小的散角,更适用于在时间和空间上等离子 体密度不太均匀的离子源,在大的横纵比下能获 得较好的结果,耐压性能好,电极功率负荷小等

引出/加速系统束流光学

- 等离子体与引出第一电极之间形成单鞘层,鞘层电位差由等离子体和第一电极间的电位差决定,决定了E₁的大小;电场 E₂由电极上加载的电压决定。
- 束的聚焦可以通过调节等离子体电位以及束引出电极的电位
 差来调节,使引出的离子束获得良好的离子光学特性。

 $E_1 = \frac{V_s}{d_s}$

等离子体在引出电极前的鞘层厚度(德拜长度): $d_s = (\frac{\varepsilon_0 T_e}{e^2 n_a})^{1/2}$

等离子体密度的变化引起鞘层厚道的变化,既而影响鞘层内的电场 强度大小,既而改变束聚焦

$$f \approx \frac{2V}{E_2 - E_1}$$

$$I_{E} = \frac{4\varepsilon_{0}}{9}\sqrt{2\eta} \frac{V^{3/2}}{d^{2}} = 5.45 \times 10^{-8} \sqrt{\frac{z}{A}} \frac{V^{3/2}}{d^{2}} S_{e}$$

$$J_{E} \approx 0.4n_{eo}e \sqrt{\frac{2kT_{e}}{m_{i}}}$$

$$I_{E} \approx 0.4n_{eo}e \sqrt{\frac{2kT_{e}}{m_{i}}}$$

负离于加速器

负离子引出

□引出负离子会同时引出电子
□电子剥离(设计磁偏转剥离同时引出的电子)
□开展束的矫正设计

Extractor + Accelerator Source Space charge compensation ΔV_2 ΔV_1 EG GG PG D D- ____ EG GG PG D Dв⊙

负离子束引出基本原理

孔偏移产生束流偏转的原理

电场塑形板 (或称kerb) 产生束流偏转的原理

- > 离子源发展简史
- > 离子源的分类
- > 离子源的工作原理
- ≻ 大功率离子源在NBI上的应用
 - □ 热阴极离子源
 □ 射频离子源
 □ 负离子源

2005-2013: DNB系统热阴极离子源 50kV@8A

忽然的极离子源: PLT NBI系统2000-2013

HT-7 NBI系统是2000年由美国德克萨斯大学赠送我所,该装置之前为美国的PLT装置服务,在赠送我所时处于报废闲置的状态。 设计参数为注入束能量是45keV,注入功率约700kW,脉宽为100~300ms

□ 22cm双潘宁型离子源,由 灯丝发射热电子,在阴极与 中间电极之间的腔体内震荡 1号附机 ,使工作气体电离,建立起 阴极区等离子体;再利用阳 会切承场 极电场将阴极区等离子体中 的电子引出至二号阳极所围 真空室内;这些电子在一号 阳极、二号阳极和加速极之 间的电场作用下,电离该区 域的工作气体,建立阳极区

在引出系统,经过高压加
 速极、负高压抑制极和接地
 极,引出高能离子束

2021/7/28

EAST-NBI-1

- □ 2009-2013: 在发改委支持下建设4年 @1.1亿元
- 第一次大功率离子源研制,实际2008年 清明开始方案设计和预研

EAST-NBI-2

- □ 2013-2015:科技部支持下建设80keV @ 4MW
- □ 2020-2021:由F窗口调整到D窗口(正切)

◆ 离子源均为热阴极正离子源

2021/7/28

等离子体发生器

27

等离子体发生器提供一定密度和密度均匀性的等离 子体---离子的源泉!

引出等离子体中的离子并加速形成离子束,获得 一定的能量

离子源综合测试平台

离子源调试是一个循序渐进的过程,"打火"是必然经历的过程
 在不同的锻炼阶段进行打火等级划分,避免"大打火"
 打火的影响因素:离子源、高压电源、控制及连锁保护、抽充气等

热阴极离子源的长脉冲运行

灯丝电源与弧电源共阴极,当弧流从灯丝的负极流出,增大了灯丝加热电流,发射更多的热电 子,导致等离子体密度(弧流)上升

 $I_{arc} = (J_e + J_{pe})S_A = I_{pe} + I_b$

在束引出过程中,高能反向电子流进入离子源,引起放电室电离度增加,等离子体密度(弧流)升高(电子对灯丝的轰击,增发灯丝电子发射的增加)

灯丝寿命问题、钨蒸气污染问题。。。

热阴极离子源基本实验特性

NBI多种注入模式

热阴极离子源的长脉冲运行

涉及离子源物理、控制及连锁保护、电源技术等

不断优化离子源的性能,尽力保障EAST物理实验!

射频离子源相对于热阴极离子源的优点

射频(RF)离子源

- ✓ 无灯丝结构,离子源寿命长
- ✓ 结构简单, 安装维护方便
- ✓ 无电极污染
- ✓ 供电系统简单
- ✓ 射频功率通过传输隔离可以工作与地电位
- ✓ 等离子体密度高, 相对易于控制

RF coil

射频放电基本原理图

Insulator

射频离子源基本组成原理图

射频 (RF) 离子源

德国IPP最早开展射频离子源的研究,目前依然处于绝对领先地位!

2021/7/28

- PINI-size, 22x50 cm²; 真空绝缘;
- •10s 脉冲; 首次采用内法拉第屏蔽;
- ・注入功率10MW。
- 束流: H⁺: 90 A / 100 kW / 55 kV D⁺: 65 A / 80 kW / 93 kV
- 高可靠度:
 - 从1997 年运行,无维护,无故障 2007年RF源成为ITER-NBI离子源

ASIPP射频离子源

2021/7/28

82kW @ 1050s 射频放电波形

双激励器射频离子源

负离子源

负离子产生及损失

□负离子产生是负离子源中关键的问题之一(产生率低、容易损失)

负离子的产生与损失

体产生机制 (Volume production): 低能电子 (1-2eV) 与振动激发态的氢分子离解碰撞,从而产生负氢离子

 $H_2^* (v " > 4) + e (\sim 1 eV) \rightarrow H^- + H$

面产生机制 (surface production):氢原子或者氢离子与器 壁碰撞,捕获电子变成负氢离子,目前采用逸出功比较低的铯 (1.45eV@0.6原子层厚)

 $\mathrm{H} + \mathrm{surface} \; \mathrm{e} \; (\mathrm{Cs}) \to \mathrm{H}^{\scriptscriptstyle -}$

负氢消亡: H⁻的电子亲和势很小(0.75eV), 被吸附的电子容易 因为碰撞而解吸

```
电子剥离: H^- + e → H + 2e
中性化: H^- + H^+ → H + H
碰撞剥离: H^- + H → e + H_2
```

 $H^- + H_2 \rightarrow e + H + H_2$

负离于产生及损失

□负离子产生是负离子源中关键的问题之一(产生率低、容易损失)

负离子的产生与损失

体产生机制 (Volume production): 低能电子 (1-2eV) 与振动激发态的氢分子离解碰撞,从而产生负氢离子

 $H_2^* (v " > 4) + e (\sim 1eV) \rightarrow H^- + H$

面产生机制 (surface production):氢原子或者氢离子与器 壁碰撞,捕获电子变成负氢离子,目前采用逸出功比较低的铯 (1.45eV@0.6原子层厚)

 $H + surface e (Cs) \rightarrow H^-$

负氢消亡: H⁻的电子亲和势很小(0.75eV), 被吸附的电子容易 因为碰撞而解吸

> 电子剥离: $H^- + e \rightarrow H + 2e$ 中性化: $H^- + H^+ \rightarrow H + H$ 碰撞剥离: $H^- + H \rightarrow e + H_2$ $H^- + H_2 \rightarrow e + H + H_2$

过滤磁场模拟分析

横向磁场,电子温度从6eV降至1eV

负离子源加速器

□负离子源加速器的研究基本在日本 (NIFS\QST) □设计了负离子引出和单极加速系统,完成负离子加速器样机的研制

负离子引出

引出负离子会同时引出电子
磁偏转剥离同时引出的电子
束的矫正设计

负离子源研制进展

□ 开展面产生方式(铯注入)提高负氢离子产额分析□ 开展铯循环优化(束源放电室及PG电极主动温控)

105秒可重复负离子引出实验波形

铯注入系统安装于束源的实物图

负离子源研制进展

48

- ELISE (IPP Garching): 半尺寸, 60keV, 10s → 验证和修改离子源
- SPIDER (RFX, Padua): 全尺寸, 100keV, 3600s → 验证和修改离子源
- MITICA (RFX, Padua): 全尺寸, 1 MeV, 3600s → 验证和修改加速器及束线
- DNB 实验装置 (Ghandinagar, India): 全尺寸, 100 keV, 3600s

ITER页离子源的研制

Activities		2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
		Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1Q2Q3Q4	Q1Q2Q3Q4	Q1Q2Q3Q4	Q1Q2Q3Q4	Q1Q2Q3Q4	Q1Q2Q3Q4					
ITER Baseline														
NBTF														
SPIDER BS Maintenance & RF and Vacuum Upgrade														
SPIDER Experiments														
MITICA Components - Design & Procurement														
MITICA HV Testing w/o BS and BLC														
MITICA Cryopump Assembly & Commissioning														
MITICA BS Assembly														
MITICA BS Commissioning & Exper. without beam														
MITICA BLC Testing & Commissioning														
MITICA Experiments														
Medium RF Power; short pulses														
Medium to high RF Power; short pulses														
High RF Power; Optimization; Long Pulses														
Extended Operation														
HNBs														
PS - Design & Procurement														
Bushing - Design & Procurement														
Beam Source - Manufacturing														
BLCS - Manufacturing														
PS - Installation														
NB Cpts I Installation (Vessel, DD, VVPSS Box, HV Bushing)														
1MV Tests														
NB Cpts II Installation (ES, AV, FS, BLCs, Sources)														
Integrated Commissioning HNB														

Long pulse, high power operation of ELISE: Most recent results and conclusions

Potential rods + Caesium overconditioning

 \Rightarrow Significant stabilization and reduction of co-extracted e⁻.

 \Rightarrow Strong reaction of j on P_{RF} U_{ex} ...

Main remaining issue:

Identify measures for symmetrizing and stabilizing electrons in deuterium.

SPIDER—under testing

大面积射频放电(80kW/driver)、负离子产生和引出(无铯注入, 20A/m²)

MITICA—under construction

口借鉴ITER设计和德国IPP、日本LHD、日本QST、意大利PRIMA的研制经验, 完成了CFETR NBI负离子束源系统概念设计 (1MeV@50MW)

- > 离子源发展简史
- > 离子源的分类
- > 离子源的工作原理
- > 大功率离子源在NBI上的应用
- ≻ 小结

结

离子源的基本工作原理是气体放电和静电加速理论 聚变能研究推动了高能量、高功率、长脉冲离子源的研发 离子源是实验性较强的学科,离子源的锻炼存在多种学科的交叉 短脉冲热阴极正离子源相对成熟,射频负离子源最有可能实现稳态运行(挑战)

期望我的报告能让大家更了解离子源,了解NBI!

